Gaussian Graphical Models in Metabolomics

Raji Balasubramanian (UMass-Amherst) and Denise Scholtens (Northwestern Feinberg School of Medicine)

Sunday June 23, 2019

Graphical models in medicine

Data

Introduction to network analysis in R

Gaussian Graphical Models (GGM) in R

Graphical models in medicine

NETWORK MEDICINE

- **Fundamental principle**: disease module hypothesis that disease variants are connected.
- Evidence in literature: 10-fold increase in products of genes associated with a disorder when compared to expectation under random chance.
- **References**: Su and Clish, Metabolomics and Network Medicine, 2017; Goh, K. I., Cusick, M. E. et. al., The human disease network, 2007.

Metabolites are naturally represented as networks:

- **Nodes**: represent individual metabolites.
- Edges (undirected): denote pairwise metabolite relationships.

EXAMPLE NETWORK

Figure 1: Maternal BMI and newborn SSF associated metabolite networks from Sandler, V., Reisetter, A. C. et. al., Diabetologia, 2017.

CORRELATION NETWORKS

- Correlation networks are established methods for constructing metabolite networks.
- Edges in correlation networks depict pairwise correlations between metabolite pairs.
- Networks are often created by thresholding on a correlation cut-off.
- Recent example from literature: A network analysis of biomarkers for Type 2 Diabetes in the Nurses Health Study.¹

¹Huang, T., Glass, K. et al., Diabetes, 2018.

CORRELATION NETWORKS

- **Drawback:** Correlations between metabolite pairs can be driven by direct and indirect relationships.
- Drivers of high correlation include shared or common enzymatic activities. ².
- Large number of non-zero pairwise correlations are usually observed.
- Absence of an edge results from satisfying a strong criterion of marginal independence between metabolite pairs.³

²Su and Clish, Metabolomics and Network Medicine, 2017 ³Strimmer, K., Notes on Gaussian Graphical Models. http://www.strimmerlab.org/notes/ggm.html

GAUSSIAN GRAPHICAL MODELS (GGM)

- **Model:** Metabolites are multivariate Gaussian with mean μ and covariance matrix Σ .
- The precision (concentration) matrix $\Omega = \Sigma^{-1}$.
- If Ω_{jk} = 0, then the *i*th metabolite is independent of the *j*th metabolite, given all other variables.

GGM ESTIMATION

- Meinshausen and Buhlmann (2006): estimates $\Omega_{jk} = 0$ by fitting a lasso to each metabolite, using all others as predictors.
- $\hat{\Omega}_{jk} \neq 0$: if the estimated coefficients of metabolite *i* on *j* AND vice-versa are non-zero.

• Friedman et al. (2007): Glasso and variants for exact maximization of the penalized log-likelihood.

MODEL SELECTION

- Gaussian graphical model estimation involves a process to estimate the **optimal regularization parameter** (λ).
- Large values of λ correspond to increasing sparsity of the resulting graph.
- Stability approach for regularization selection (StARS): uses a subsampling approach to estimate the optimal λ .
- Rotation information criterion (RIC): uses a permutation approach to estimate λ .

CORRELATION NETWORK VERSUS GGM

- **Correlation network:** An edge between metabolite pairs can result from both direct AND indirect relationships.
- GGM: An edge exists ONLY if the metabolite pair is dependent after accounting for all other indirect relationships.

Data

HAPO METABOLOMICS

- Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study conducted during 2000 2006 at 15 international field centers.
- Blood samples were obtained during a 75-g oral glucose tolerance test (OGTT) between 24 and 32 weeks gestation.
- Metabolites were measured in maternal fasting and 1-h serum samples from **400** mothers in each ancestry group (Afro-Caribbean, Mexican American, Northern European, Thai).
- Mothers were sampled to span the range of maternal glucose and BMI.

Data Format:

- Column 1: ID
- Column 2: Ancestry Group
- Column 3: Fasting glucose
- Columns 4-54: 51 metabolites

HAPO METABOLOMICS

Loading data ..

#PC users #setwd("C:/Users/username/Desktop/Metabolomics Workshop 2019/")

```
#mac users
setwd("~/Desktop/Metabolomics Workshop 2019")
mydat <- read.csv(file = "hapo_metabolomics_2019.csv")
print(mydat[1:3,1:10])</pre>
```

id anc_gp fpg mt1_1 mt1_2 mt1_3 mt1_4 mt1_5
1 hm0001 ag3 75.6 218.2223 76.99525 19.06366 14.23091 86.75162
2 hm0002 ag3 84.6 292.6314 136.41320 43.14854 17.77549 120.17344
3 hm0003 ag4 79.2 361.1135 79.98370 22.15848 13.05497 74.75441
mt1_6 mt1_7
1 135.2109 64.00578
2 213.6531 91.30156
3 136.1587 83.67878

Three groups of metabolites:

- Prefix mt1: Amino Acids (AA)
- Prefix mt2: Acyl carnitines (AC)
- Prefix mt3: Other

Let's take a look at the numbers by **ancestry group**:

ag <- mydat[,2]
table(ag)</pre>

ag
ag1 ag2 ag3 ag4
400 400 400 400

Let's take a look at the distribution of fasting glucose:

fg <- mydat[,3]
summary(fg)</pre>

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 61.20 77.40 81.00 81.63 86.40 106.20

HAPO METABOLOMICS

Let's take a look at the distribution of fasting glucose:

Histogram of fg

Introduction to network analysis in R

Preliminaries

- graph R package: provides a way of representing graphs as a graphNEL object.
- **igraph R** package: also provides various tools for working with graphs.

PRELIMINARIES

- Let's work with a small (p=6) set of metabolites sampled from the HAPO dataset.
- As an example, we start with a simple correlation network of 6 metabolites

```
mx <- mydat[,-c(1:3)]
mx.1 <- mx[ag == "ag1", c(1,2,16,17,34,35)]
cor.1 <- round(cor(mx.1, use="pairwise.complete.obs"), digits=2)
### Create an adjacency matrix using a threshold of 0.1
adj.1 <- matrix(0, nrow(cor.1), nrow(cor.1))
adj.1[abs(cor.1) > 0.1] <- 1
colnames(adj.1) <- rownames(adj.1) <- colnames(cor.1)</pre>
```

Defining network objects in R

Let p denote the number of metabolites in our network.

- Adjacency matrix: $p \times p$ matrix, where i, j element is 1 if there is an edge between metabolite i and metabolite j, and 0 otherwise.
- GraphNEL object: network object defined in the R graph package

Adjacency matrix
print(adj.1)

##		$mt1_1$	$mt1_2$	$mt2_1$	$mt2_2$	$mt3_1$	mt3_2
##	$mt1_1$	1	1	1	1	0	0
##	$mt1_2$	1	1	0	0	0	1
##	$mt2_1$	1	0	1	1	0	0
##	$mt2_2$	1	0	1	1	0	0
##	$mt3_1$	0	0	0	0	1	0
##	$mt3_2$	0	1	0	0	0	1

GRAPHNEL R OBJECT

- Convert the adjacency matrix into a GraphNEL object using the graph R package.
- Extract information on the nodes and edges of the network.

```
### Converts the adjacency matrix into a graphNEL object
library(graph)
graphObj <- as(adj.1, "graphNEL")
graphObj
```

```
## A graphNEL graph with undirected edges
## Number of Nodes = 6
## Number of Edges = 11
```

Extracting information about the graphNEL object
print(nodes(graphObj))

```
## [1] "mt1_1" "mt1_2" "mt2_1" "mt2_2" "mt3_1" "mt3_2"
```

GRAPHNEL R OBJECT

Extract information on the edges of the network.

```
## Printing the edges of the network
print(edges(graphObj))
```

```
## $mt1_1
## [1] "mt1 1" "mt1 2" "mt2 1" "mt2 2"
##
## $mt1_2
## [1] "mt1_1" "mt1_2" "mt3_2"
##
## $mt2_1
## [1] "mt1 1" "mt2 1" "mt2 2"
##
## $mt2_2
## [1] "mt1 1" "mt2 1" "mt2 2"
##
## $mt3_1
## [1] "mt3_1"
##
## $mt3_2
## [1] "mt1_2" "mt3_2"
```

IGRAPH R PACKAGE

We can convert an adjacency matrix to an igraph object.

library(igraph)

Warning: package 'igraph' was built under R version 3.5.2

igraph.obj <- graph.adjacency(adj.1,mode="undirected",weighted=NULL,diag=FALSE)</pre>

Extracting nodes and edges from igraph object V(igraph.obj)

+ 6/6 vertices, named, from bded127: ## [1] mt1_1 mt1_2 mt2_1 mt2_2 mt3_1 mt3_2

E(igraph.obj)

```
## + 5/5 edges from bded127 (vertex names):
## [1] mt1_1--mt1_2 mt1_1--mt2_1 mt1_1--mt2_2 mt1_2--mt3_2 mt2_1--mt2_2
```

Let's assign metabolite class to each of our nodes and an associated color.

Assigning attributes to the list of nodes
V(igraph.obj)\$MxClass <- c(rep("AA", 2), rep("AC", 2), rep("0th", 2))
V(igraph.obj)\$color <- c(rep("red", 2), rep("light blue", 2), rep("green", 2))
V(igraph.obj)\$label.cex <- 0.75</pre>

VISUALIZING OUR NETWORK

Visualize the network ...

Visualizing network
plot.igraph.obj, vertex.label = colnames(adj.1), layout = layout.fruchterman.reingold)

CHANGING NODE ATTRIBUTES

Let's change node size in proportion to significance of association with fasting glucose..

```
### Changing the node size to match the level
```

of signficance with outcome (fasting glucose)

```
myfun <- function(metabolite, outcome) {
    mymod <- lm(outcome ~ metabolite)
    minuslogp <- -log(summary(mymod)$coef[2, 4])
    return(minuslogp)
}</pre>
```

```
fg1 <- fg[ag == "ag1"]
vals <- apply(mx.1, 2, myfun, fg1)</pre>
```

scaling the node size changing the font fize of the vertex label

```
V(igraph.obj)$size <- vals * 3 + 20
V(igraph.obj)$label.cex <- 0.6</pre>
```

VISUALIZING OUR NETWORK

Visualize the network after changing node attributes..

Visualizing network
plot.igraph(igraph.obj, vertex.label = colnames(adj.1), layout = layout.fruchterman.reingold)

We can also visually depict metabolite classes (Amino acids, Acyl carnitines, Other) in our network ..

Visualizing network with node groups
mylist <- list(c("mt1_1", "mt1_2"), c("mt2_1", "mt2_2"), c("mt3_1", "mt3_2"))</pre>

GROUPING NODES

plot.igraph(igraph.obj,vertex.label=colnames(adj.1),

layout=layout.fruchterman.reingold, mark.groups=mylist)

There are a myriad of options available for visualizing networks. For more, see help associated with plot.igraph() in the igraph package.

```
### Other layouts (Kamada-Kawai)
### For other options -- Check ?plot.igraph
l <- layout_with_kk(igraph.obj)
plot.igraph(igraph.obj, vertex.label = colnames(adj.i), layout = 1, mark.groups = mylist)</pre>
```

Gaussian Graphical Models (GGM) in R

GGM in R

We illustrate estimation of the Gaussian graphical model using the R package huge.

To keep in mind:

- Missing values of metabolite levels need to be imputed prior to invoking the functions in **huge**.
- Each metabolite should be standardized to render them of unit variance.

PRELIMINARIES

We prepare metabolite data in ancestry group ag1 for graphical model estimation.

Prepping data for GGM Impute missing values Standardize

```
standardizeMetabolite = function(x) {
    x[x == Inf] <- NA
    x[is.na(x)] <- min(x, na.rm = T)/2
    return((x - mean(x, na.rm = T))/sd(x, na.rm = T))
}
mx.1 <- mx[ag == "ag1", ]
mx1.s <- apply(mx1., 2, standardizeMetabolite)
summary(apply(mx1.s, 2, sd))</pre>
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1 1 1 1 1 1 1 The key functions involved are:

- **huge:** estimates GGM over a range of penalty parameters (can be left unspecified).
- huge.select: implements regularization parameter selection.
 Reference: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

Regularization parameter selection options include:

- StARS: tends to overselects edges.
- RIC: more computationally efficient, tends to underselect edges.
- **Reference**: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

GGM ESTIMATION

Let's estimate the GGM network for our data..

```
library(huge)
```

Warning: package 'huge' was built under R version 3.5.2

```
### creates the GGM model object
mbModel <- huge(mx1.s, method = "mb")</pre>
```

Conducting Meinshausen & Buhlmann graph estimation (mb)....done

```
### Optimal parameter selection using ric
mbOptRIC = huge.select(mbModel, criterion = "ric")
```

Conducting rotation information criterion (ric) selection....done
Computing the optimal graph....done

extract the graph corresponding to optimal param
mbOptRICGraph = mbOptRIC\$refit

GGM

Visualize our estimated GGM ..

Let's estimate the GGM network for our data..

```
myg <- graph_from_adjacency_matrix(mb0ptRICGraph, mode = "undirected")
### Assigning attributes to the list of nodes
V(myg)$MxClass <- c(rep("AA", 15), rep("AC", 18), rep("0th", 18))
V(myg)$color <- c(rep("red", 15), rep("light blue", 18), rep("green", 18))
V(myg)$size <- 10
V(myg)$label.cex <- 0.5</pre>
```

GGM

Visualizing network
plot.igraph(myg, vertex.label = colnames(mx.1), layout = layout.fruchterman.reingold)

OTHER OPTIONS

- Method: can be changed to glasso; huge(.., method="glasso").
- **Selecting** λ : in huge.select(.., criterion="stars").
- Relaxing Gaussian assumption: using nonparanormal (npn) transformation; huge.npn() will return a transformed data matrix.

Telling stories with GGMs

- Detecting communities within networks
- Differential networks
- Case studies

References

- Su, J. and Clish, C. (2018). Metabolomics and Network Medicine, Network Medicine: Complex Systems in Human Disease and Therapeutics, Harvard University Press.
- Go, KI, Cusick, ME, Valle, D, Childs B, Vidal M, Barabási AL (2007). The human disease network, PNAS, 104(21):8685-90.
- Sandler, V., Reisetter, A. C., Bain, J.R., ..., Scholtens, D.M., Lowe, W.L.Jr (2018) Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes, Diabetologia, 60(3):518-530.
- Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso, Annals of Statistics, Vol. 34, No. 3, 1436-1462.
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9(3):432-441.
- Roeder, K., Lafferty, J., Wasserman, L., Zhao, T., Liu, H. (2012) The huge package for high-dimensional undirected graph estimation in R. Journal of Machine Learning Research, (13):1059–1062.