Gaussian Graphical Models in Metabolomics

Raji Balasubramanian (UMass-Amherst) and Denise Scholtens
(Northwestern Feinberg School of Medicine)

Sunday June 23, 2019

Graphical models in medicine

Data

Introduction to network analysis in R

Gaussian Graphical Models (GGM) in R

Graphical models in medicine

Network Medicine

- Fundamental principle: disease module hypothesis that disease variants are connected.
- Evidence in literature: 10 -fold increase in products of genes associated with a disorder when compared to expectation under random chance.
- References: Su and Clish, Metabolomics and Network Medicine, 2017; Goh, K. I., Cusick, M. E. et. al., The human disease network, 2007.

Metabolites as networks

Metabolites are naturally represented as networks:

- Nodes: represent individual metabolites.
- Edges (undirected): denote pairwise metabolite relationships.

Example network

Figure 1: Maternal BMI and newborn SSF associated metabolite networks from Sandler, V.,Reisetter, A. C. et. al., Diabetologia, 2017.

Correlation networks

- Correlation networks are established methods for constructing metabolite networks.
- Edges in correlation networks depict pairwise correlations between metabolite pairs.
- Networks are often created by thresholding on a correlation cut-off.
- Recent example from literature: A network analysis of biomarkers for Type 2 Diabetes in the Nurses Health Study. ${ }^{1}$
${ }^{1}$ Huang, T., Glass, K. et al., Diabetes, 2018.

Correlation networks

- Drawback: Correlations between metabolite pairs can be driven by direct and indirect relationships.
- Drivers of high correlation include shared or common enzymatic activities. ${ }^{2}$.
- Large number of non-zero pairwise correlations are usually observed.
- Absence of an edge results from satisfying a strong criterion of marginal independence between metabolite pairs. ${ }^{3}$

[^0]
Gaussian graphical models (GGM)

- Model: Metabolites are multivariate Gaussian with mean μ and covariance matrix Σ.
- The precision (concentration) matrix $\Omega=\Sigma^{-1}$.
- If $\Omega_{j k}=0$, then the i th metabolite is independent of the j th metabolite, given all other variables.

GGM estimation

- Meinshausen and Buhlmann (2006): estimates $\Omega_{j k}=0$ by fitting a lasso to each metabolite, using all others as predictors.
- $\hat{\Omega}_{j k} \neq 0$: if the estimated coefficients of metabolite i on j AND vice-versa are non-zero.
- Friedman et al. (2007): Glasso and variants for exact maximization of the penalized log-likelihood.

Model selection

- Gaussian graphical model estimation involves a process to estimate the optimal regularization parameter (λ).
- Large values of λ correspond to increasing sparsity of the resulting graph.
- Stability approach for regularization selection (StARS): uses a subsampling approach to estimate the optimal λ.
- Rotation information criterion (RIC): uses a permutation approach to estimate λ.

Correlation network versus GGM

- Correlation network: An edge between metabolite pairs can result from both direct AND indirect relationships.
- GGM: An edge exists ONLY if the metabolite pair is dependent after accounting for all other indirect relationships.

Data

HAPO Metabolomics

- Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study conducted during 2000-2006 at 15 international field centers.
- Blood samples were obtained during a 75-g oral glucose tolerance test (OGTT) between 24 and 32 weeks gestation.
- Metabolites were measured in maternal fasting and 1-h serum samples from 400 mothers in each ancestry group (Afro-Caribbean, Mexican American, Northern European, Thai).
- Mothers were sampled to span the range of maternal glucose and BMI.

HAPO Metabolomics

Data Format:

- Column 1: ID
- Column 2: Ancestry Group
- Column 3: Fasting glucose
- Columns 4-54: 51 metabolites

HAPO Metabolomics

Loading data ..

```
#PC users
#setwd("C:/Users/username/Desktop/Metabolomics Workshop 2019/")
#mac users
setwd("~/Desktop/Metabolomics Workshop 2019")
mydat <- read.csv(file = "hapo_metabolomics_2019.csv")
print(mydat[1:3,1:10])
```

\#\#	id	anc_gp	fpg	mt1_1	mt1_2	mt1_3	mt1_4	mt1_5
\#\# 1	hm 0001	ag3	75.6	218.2223	76.99525	19.06366	14.23091	86.75162
\#\#	hm0002	ag3	84.6	292.6314	136.41320	43.14854	17.77549	120.17344
\#\#	hm0003	ag4	79.2	361.1135	79.98370	22.15848	13.05497	74.75441
\#\#	mt1_6	mt1_7						
\#\# 1	135.2109	64.00578						
\#\# 2	213.6531	91.30156						
\#\# 3	136.1587	83.67878						

HAPO Metabolomics

Three groups of metabolites:

- Prefix mt1: Amino Acids (AA)
- Prefix mt2: Acyl carnitines (AC)
- Prefix mt3: Other

HAPO Metabolomics

Let's take a look at the numbers by ancestry group:

```
ag <- mydat[,2]
table(ag)
```

\#\# ag
\#\# ag1 ag2 ag3 ag4
\#\# 400400400400

HAPO Metabolomics

Let's take a look at the distribution of fasting glucose:

```
fg <- mydat[,3]
summary(fg)
```

\#\#	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
$\# \#$	61.20	77.40	81.00	81.63	86.40	106.20

HAPO Metabolomics

Let's take a look at the distribution of fasting glucose:

Histogram of fg

Fasting glucose

Introduction to network analysis in R

Preliminaries

- graph R package: provides a way of representing graphs as a graphNEL object.
- igraph R package: also provides various tools for working with graphs.

Preliminaries

- Let's work with a small $(p=6)$ set of metabolites sampled from the HAPO dataset.
- As an example, we start with a simple correlation network of 6 metabolites

```
mx <- mydat[,-c(1:3)]
mx.1 <- mx[ag == "ag1", c(1,2,16,17,34,35)]
cor.1 <- round(cor(mx.1, use="pairwise.complete.obs"), digits=2)
### Create an adjacency matrix using a threshold of 0.1
adj.1 <- matrix(0, nrow(cor.1), nrow(cor.1))
adj.1[abs(cor.1) > 0.1] <- 1
colnames(adj.1) <- rownames(adj.1) <- colnames(cor.1)
```


Defining network objects in R

Let p denote the number of metabolites in our network.

- Adjacency matrix: $p \times p$ matrix, where i, j element is 1 if there is an edge between metabolite i and metabolite j, and 0 otherwise.
- GraphNEL object: network object defined in the R graph package

```
### Adjacency matrix
print(adj.1)
```

\#\#	mt1_1	mt1_2	mt2_1	mt2_2	mt3_1	$m t 3 _2$
\#\# mt1_1	1	1	1	1	0	0
\#\# mt1_2	1	1	0	0	0	1
\#\# mt2_1	1	0	1	1	0	0
\#\# mt2_2	1	0	1	1	0	0
\#\# mt3_1	0	0	0	0	1	0
\#\# mt3_2	0	1	0	0	0	1

GraphNEL R object

- Convert the adjacency matrix into a GraphNEL object using the graph R package.
- Extract information on the nodes and edges of the network.

```
### Converts the adjacency matrix into a graphNEL object
library(graph)
graphObj <- as(adj.1, "graphNEL")
graphObj
```

\#\# A graphNEL graph with undirected edges
\#\# Number of Nodes $=6$
\#\# Number of Edges $=11$
\#\#\# Extracting information about the graphNEL object
print(nodes(graphObj))
\#\# [1] "mt1_1" "mt1_2" "mt2_1" "mt2_2" "mt3_1" "mt3_2"

GraphNEL R object

Extract information on the edges of the network.

```
## Printing the edges of the network
print(edges(graphObj))
```

```
## $mt1_1
## [1] "mt1_1" "mt1_2" "mt2_1" "mt2_2"
##
## $mt1_2
## [1] "mt1_1" "mt1_2" "mt3_2"
##
## $mt2_1
## [1] "mt1_1" "mt2_1" "mt2_2"
##
## $mt2_2
## [1] "mt1_1" "mt2_1" "mt2_2"
##
## $mt3_1
## [1] "mt3_1"
##
## $mt3_2
## [1] "mt1_2" "mt3_2"
```


IGRAPH R PACKAGE

We can convert an adjacency matrix to an igraph object.

```
library(igraph)
## Warning: package 'igraph' was built under R version 3.5.2
igraph.obj <- graph.adjacency(adj.1,mode="undirected",weighted=NULL,diag=FALSE)
## Extracting nodes and edges from igraph object
V(igraph.obj)
## + 6/6 vertices, named, from bded127:
## [1] mt1_1 mt1_2 mt2_1 mt2_2 mt3_1 mt3_2
E(igraph.obj)
## + 5/5 edges from bded127 (vertex names):
## [1] mt1_1--mt1_2 mt1_1--mt2_1 mt1_1--mt2_2 mt1_2--mt3_2 mt2_1--mt2_2
```


Visualizing our network

Let's assign metabolite class to each of our nodes and an associated color.

```
### Assigning attributes to the list of nodes
V(igraph.obj)$MxClass <- c(rep("AA", 2), rep("AC", 2), rep("Oth", 2))
V(igraph.obj)$color <- c(rep("red", 2), rep("light blue", 2), rep("green", 2))
V(igraph.obj)$size <- 50
V(igraph.obj)$label.cex <- 0.75
```


Visualizing our network

Visualize the network..
\#\#\# Visualizing network
plot.igraph(igraph.obj, vertex.label = colnames(adj.1), layout = layout.fruchterman.reingold)

Changing node attributes

Let's change node size in proportion to significance of association with fasting glucose..
\#\#\# Changing the node size to match the level

```
### of signficance with outcome (fasting glucose)
myfun <- function(metabolite, outcome) {
    mymod <- lm(outcome ~ metabolite)
    minuslogp <- -log(summary(mymod)$coef[2, 4])
    return(minuslogp)
}
fg1 <- fg[ag == "ag1"]
vals <- apply(mx.1, 2, myfun, fg1)
```

\#\#\# scaling the node size changing the font fize of the vertex label
V(igraph.obj)\$size <- vals * $3+20$
V(igraph.obj)\$label.cex <- 0.6

Visualizing our network

Visualize the network after changing node attributes..
\#\#\# Visualizing network
plot.igraph(igraph.obj, vertex.label = colnames(adj.1), layout = layout.fruchterman.reingold)

Grouping nodes

We can also visually depict metabolite classes (Amino acids, Acyl carnitines, Other) in our network ..
\#\#\# Visualizing network with node groups
mylist <- list(c("mt1_1", "mt1_2"), c("mt2_1", "mt2_2"), c("mt3_1", "mt3_2"))

Grouping nodes

plot.igraph(igraph.obj, vertex.label=colnames(adj.1),
layout=layout.fruchterman.reingold, mark.groups=mylist)

Networks in R

There are a myriad of options available for visualizing networks. For more, see help associated with plot.igraph () in the igraph package.

```
### Other layouts (Kamada-Kawai)
### For other options -- Check ?plot.igraph
l <- layout_with_kk(igraph.obj)
plot.igraph(igraph.obj, vertex.label = colnames(adj.1), layout = l, mark.groups = mylist)
```


Gaussian Graphical Models (GGM) in R

GGM in R

We illustrate estimation of the Gaussian graphical model using the R package huge.

To keep in mind:

- Missing values of metabolite levels need to be imputed prior to invoking the functions in huge.
- Each metabolite should be standardized to render them of unit variance.

Preliminaries

We prepare metabolite data in ancestry group ag1 for graphical model estimation.
\#\#\# Prepping data for GGM Impute missing values Standardize
standardizeMetabolite $=$ function(x) \{
$\mathrm{x}[\mathrm{x}==\operatorname{Inf}]<-$ NA
x [is.na(x)] <- min(x, na.rm $=T) / 2$ return $((x-\operatorname{mean}(x$, na.rm $=T)) / s d(x, n a . r m=T))$
\}
mx. 1 <- mx[ag == "ag1",]
mx1.s <- apply(mx.1, 2, standardizeMetabolite)
summary(apply(mx1.s, 2, sd))

\#\#	Min. 1 st Qu.	Median	Mean 3 3rd Qu.	Max.		
$\# \#$	1	1	1	1	1	1

GGM estimation

The key functions involved are:

- huge: estimates GGM over a range of penalty parameters (can be left unspecified).
- huge.select: implements regularization parameter selection. Reference: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

GGM estimation

Regularization parameter selection options include:

- StARS: tends to overselects edges.
- RIC: more computationally efficient, tends to underselect edges.
- Reference: T. Zhao and H. Liu (2012). The huge Package for High-dimensional Undirected Graph Estimation in R. Journal of Machine Learning Research.

GGM estimation

Let's estimate the GGM network for our data..

```
library(huge)
```

\#\# Warning: package 'huge' was built under R version 3.5.2
\#\#\# creates the GGM model object
mbModel <- huge(mx1.s, method = "mb")
\#\# Conducting Meinshausen \& Buhlmann graph estimation (mb)....done
\#\#\# Optimal parameter selection using ric mbOptRIC = huge.select(mbModel, criterion = "ric")
\#\# Conducting rotation information criterion (ric) selection....done \#\# Computing the optimal graph....done
\#\#\# extract the graph corresponding to optimal param mbOptRICGraph $=$ mbOptRIC\$refit

GGM

Visualize our estimated GGM ..

Let's estimate the GGM network for our data..

```
myg <- graph_from_adjacency_matrix(mbOptRICGraph, mode = "undirected")
### Assigning attributes to the list of nodes
V(myg)$MxClass <- c(rep("AA", 15), rep("AC", 18), rep("Oth", 18))
V(myg)$color <- c(rep("red", 15), rep("light blue", 18), rep("green", 18))
V(myg)$size <- 10
V(myg)$label.cex <- 0.5
```


GGM

\#\#\# Visualizing network
plot.igraph(myg, vertex.label = colnames(mx.1), layout = layout.fruchterman.reingold)

Other options

- Method: can be changed to glasso; huge(... method="glasso").
- Selecting λ : in huge.select(.., criterion="stars").
- Relaxing Gaussian assumption: using nonparanormal (npn) transformation; huge.npn() will return a transformed data matrix.

Next ..

Telling stories with GGMs

- Detecting communities within networks
- Differential networks
- Case studies

References

- Su, J. and Clish, C. (2018). Metabolomics and Network Medicine, Network Medicine: Complex Systems in Human Disease and Therapeutics, Harvard University Press.
- Go, KI, Cusick, ME, Valle, D, Childs B, Vidal M, Barabási AL (2007).The human disease network, PNAS, 104(21):8685-90.
- Sandler, V., Reisetter, A. C., Bain, J.R., ..., Scholtens, D.M., Lowe, W.L.Jr (2018) Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes, Diabetologia, 60(3):518-530.
- Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso, Annals of Statistics, Vol. 34, No. 3, 1436-1462.
- Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9(3):432-441.
- Roeder, K., Lafferty, J., Wasserman, L., Zhao, T., Liu, H. (2012) The huge package for high-dimensional undirected graph estimation in R. Journal of Machine Learning Research, (13):1059-1062.

[^0]: ${ }^{2}$ Su and Clish, Metabolomics and Network Medicine, 2017
 ${ }^{3}$ Strimmer, K., Notes on Gaussian Graphical Models. http://www.strimmerlab.org/notes/ggm.html

